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Abstract
EEG data, and specifically the ERP, provide psychologists with the power to examine
quickly occurring cognitive processes at the native temporal resolution at which they
occur. Despite the advantages conferred by ERPs to examine processes at different
points in time, ERP researchers commonly ignore the trial-to-trial temporal dimension
by collapsing across trials of similar types (i.e., the signal averaging approach)
because of constraints imposed by repeated measures ANOVA. Here, we present the
advantages of using multilevel modeling (MLM) to examine trial-level data to inves-
tigate change in neurocognitive processes across the course of an experiment. Two
examples are presented to illustrate the usefulness of this technique. The first demon-
strates decreasing differentiation in N170 amplitude to faces of different races across
the course of a race categorization task. The second demonstrates attenuation of the
ERN as participants commit more errors within a task designed to measure implicit
racial bias. Although the examples presented here are within the realm of social psy-
chology, the use of MLM to analyze trial-level EEG data has the potential to
contribute to a number of different theoretical domains within psychology.
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1 | INTRODUCTION

The ERP is particularly well suited to examining psychologi-
cal processes that occur quickly and often covertly following
the presentation of a stimulus or a behavioral response within
a particular task. Because the signal in each individual trial is
quite small, the EEG is typically recorded over a large num-
ber of trials, sometimes over the course of hours. In the
signal-averaging approach, EEG activity is then epoched
around each stimulus or response and averaged across trials
of the same type to isolate activity specific to the event (see
Luck, 2014). This averaging process increases the signal-to-
noise ratio by eliminating ongoing unrelated neural activity
or noise from other sources, leaving activity locked to the
stimulus or response in the waveform, given enough trials
are included (see Meyer, Riesel, & Proudfit, 2013). The
amplitude of a deflection in the averaged waveform, or ERP

component, is inferred to represent the extent to which a par-
ticular psychological process is engaged at a particular time.
To test differences in ERP components across participants or
experimental conditions, the mean amplitude is quantified
within the time interval around the deflection and analyzed
using repeated measures analysis of variance (rANOVA;
Jennings, 1987).

Creating averaged waveforms in this way makes an
important assumption, namely, that the EEG activity directly
associated with the event is constant over trials (Luck, 2014).
This effectively ignores how a particular process may change
from trial to trial and condenses the rich data set to one data
point per condition per subject (Vossen, Van Breukelen, Her-
mens, Van Os, & Lousberg, 2011). This approach has the
benefit of eliminating noise from the waveform before quan-
tifying the amplitude within the time interval of interest.
However, it assumes that no change in the signal of any kind
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is occurring over the course of the experiment. This assump-
tion is likely not appropriate, especially across long studies
where subjects may experience fatigue, learning, or familiar-
ization with the stimuli themselves. Previously, researchers
were limited to the signal-averaging approach because of the
limitations of the statistical technique being used (rANOVA).
However, with the advent of the application of multilevel
modeling (MLM) to psychophysiological research, research-
ers can now use trial-level data to examine change in cogni-
tive processes across the course of an experiment.

Multilevel models (alternatively called hierarchical linear
models, mixed effects models, or mixed regression) have
emerged as one of the most flexible and appropriate methods
for repeated measures designs. MLM is an extension of
regression that allows for simultaneous estimation of fixed
effects (effects that generalize to a population) and random
effects (effects specific to the sample). In their application to
ERP data, multilevel models typically assume that individu-
als deviate randomly from the average of all individuals in
their baseline response (intercept) and/or that individuals dif-
fer in the effect of a particular predictor on their response
(slope).

MLM has a number of strengths that make it particularly
well suited for application to ERP research. For example, it
can account for a number of unique sources of variability.
Commonly, one source of variability is individuals (subjects)
who give repeated measurements across the course of the
study. Psychophysiologists may additionally want to model
variance specific to each electrode, either independently from
subjects (i.e., in a cross-classified model; Baayen, Davidson,
& Bates, 2008; Judd, Westfall, & Kenny, 2012) or nested
within subjects (i.e., in a hierarchical model). By fitting the
model to data from all electrodes of interest and including
electrode as a grouping variable, variance attributed to elec-
trodes is estimated and fixed effects are interpretable as the
effect at the “average” electrode. By partitioning more sour-
ces of variance from the error term, MLM increases power to
detect fixed effects (Gelman & Hill, 2007; Vossen et al.,
2011), which allows researchers to examine trial-level data
without first eliminating noise by averaging across trials.

Multilevel models are additionally robust to unbalanced
data (i.e., missing observations). Unbalanced data can occur
if one electrode is particularly noisy or if a subject has too
few valid trials within a particular trial type to create a reli-
able average waveform using the signal-averaging approach.
In this case, researchers constrained by rANOVA must dis-
card a given subject’s entire record or use mean imputation
to try to reconstruct missing observations, which has other
undesirable effects (Schafer & Graham, 2002). MLM elimi-
nates the need to balance data, which is especially useful
when investigating trial-level data, since the number of dis-
carded trials due to artifacts can vary across subjects and
conditions (Tibon & Levy, 2015).

Lastly, the hierarchical nature of MLM allows for both
categorical and continuous predictors at any level of the
model. This allows researchers to include trial or time as a
continuous variable while simultaneously testing other cate-
gorical effects at the trial level (e.g., stimulus condition) and
subject level (e.g., gender) simultaneously. The ability to
employ trial-level data in this way provides a much more
detailed picture of how neurophysiological responses—and,
thus, the psychological processes that those responses reflect
—change over the course of an experimental session as a
function of learning, fatigue, or any number of other factors
that can influence performance. In turn, this information can
be critically important for investigating the effects of experi-
mental manipulations on neurocognitive processes and how
they are related to changes in response behavior. For exam-
ple, does affective priming habituate or become more pro-
nounced through repetition, and is this predicted by changes
in categorization processes indexed by ERPs? How does
fatigue over the course of a task affect cognitive control
processes, and what implications might this have for the
influence of automatic processes? How do learned expecta-
tions or changing probability information change neurocog-
nitive responses to errors? The examination of trial-level data
with MLM opens the door to investigating and statistically
testing these types of hypotheses.

Despite these advantages and the adoption of MLM in
other fields (e.g., Duncan, Jones, & Moon, 1998; Gueor-
guieva & Krystal, 2004; Lee & Bryk, 1989), use of MLM
in ERP research remains rare (though its use is increasing;
e.g., Alday, Schlesewsky, & Bornkessel-Schlesewsky,
2014; Bailey, Bartholow, Saults, & Lust, 2014; Hilgard,
Weinberg, Hajcak Proudfit, & Bartholow, 2014; Nieuw-
land, 2016; Saliasi, Geerligs, Lorist, & Maurits, 2013;
Tritt, Peterson, Page-Gould, & Inzlicht, 2016; Wierda, van
Rijn, Taatgen, & Martens, 2010). Additionally, the vast
majority of ERP studies in which MLM has been used still
quantify components’ amplitudes from waveforms pro-
duced by the signal-averaging approach. The current article
presents two examples to illustrate the advantages of using
trial-level data to investigate how ERP components change
over the course of an experiment.

2 | STUDY 1

Due to the importance of accurately and quickly processing
faces during social interactions, certain regions of the brain
appear to be specialized for the processing of human faces
(i.e., the fusiform face area; see Corrigan et al., 2009). Aris-
ing from activity in these areas, the N170 ERP component is
observed over occipital-temporal areas of the scalp and
responds selectively to faces within just �170 ms.
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Extensive research has linked the N170 most directly to
structural encoding of a face (Rossion & Jacques, 2011).
Prominent face perception models (e.g., Bruce & Young,
1986) theorize that structural encoding must precede subse-
quent identification and categorization processes, which is
consistent with a number of studies that fail to show a dis-
tinction in N170 amplitude according to race (Caldara et al.,
2003; Caldara, Rossion, Bovet, & Hauert, 2004; Chen, Pan,
Wang, Xiao, & Zhao, 2013; Ofan, Rubin, & Amodio, 2011).
Other studies, however, have found differences in N170
amplitude according to race (e.g., Brebner, Krigolson,
Handy, Quadflieg, & Turk, 2011; He, Johnson, Dovidio, &
McCarthy, 2009; Herrmann et al., 2007; Walker, Silvert,
Hewstone, & Nobre, 2008; Wiese, Stahl, & Schweinberger,
2009), gender (Wolff, Kemter, Schweinberger, & Wiese,
2014), and even membership in arbitrarily created “minimal”
groups (Ratner & Amodio, 2013), although the direction of
these effects is mixed. On the basis of these findings, authors
have suggested that, contrary to previous theorizing, differen-
ces in N170 amplitude elicited by members of different
social categories may reflect motivation or perceiver goals
related to distinguishing in-group and out-group faces (Ito &
Senholzi, 2013; Ratner & Amodio, 2013; Senholzi & Ito,
2013), and that this may occur during structural encoding
(Freeman, Ambady, & Holcomb, 2010).

The inconsistency in the existing literature challenges our
understanding of when social category cues are incorporated in
face processing and how top-down factors, such as motivation
to make group-based distinctions, influence early face process-
ing. Examining trial-level data using MLM can help test possi-
ble explanations. If motivation to distinguish faces by race
diminishes as the participant tires over the course of a task, and
if differentiation in the N170 to faces of different races depends
on motivation to categorize by race, one would expect race-
based differentiation in N170 amplitude to decrease over the
course of the task. Although participant motivation was not
measured, the current study illustrates the usefulness of trial-
level data and MLM to test for change in N170 amplitude to
different race faces as time-on-task increases (and as partici-
pants’ motivation presumably decreases).

2.1 | Method

2.1.1 | Participants

Sixty-five adults (34 women, 31 men), ages 18–48
(M5 20.4), participated in exchange for monetary compen-
sation or credit toward a research requirement. Sixty identi-
fied as White, 2 identified as Asian, and 3 identified as more
than one race. None identified as African American.

2.1.2 | Measures and procedure

Data were originally collected for a project investigating the
time course and influence of bottom-up visual manipulations
on race perception, as reported in Volpert-Esmond, Merkle,
and Bartholow (2017). EEG data were recorded as participants
viewed grayscale photographs of White and Black men’s faces
with neutral expressions and categorized them by race. During
each trial, a fixation cross was presented (duration varied ran-
domly across trials to be 500, 700, or 900 ms), followed by a
Black or White male face (270 ms), which was then masked
with a visual noise pattern (530 ms). Participants were
instructed to categorize the race of the face on each trial as
White or Black by pressing one of two buttons as quickly as
possible (response mapping was randomized across partici-
pants). If participants failed to respond within 800 ms follow-
ing face onset, text reading “Too slow!” was displayed for
1,000 ms. The ITI was 600 ms. Participants completed 8 prac-
tice trials followed by 256 experimental trials (128 presenta-
tions of each race), separated into two blocks. More
methodological details and additional manipulations and tasks
can be found in Volpert-Esmond et al. (2017).

EEG data were collected using 20 tin electrodes in a
stretch-Lycra cap and placed according to the extended Inter-
national 10–20 system (i.e., the 10-10 system; American
Clinical Neurophysiology Society, 2006).1 Scalp electrodes
were referenced online to the right mastoid. Signals were
amplified with a Neuroscan Synamps amplifier (Compumed-
ics, Charlotte, NC), filtered online at .10–40 Hz at a sam-
pling rate of 1000 Hz, and rereferenced offline to an
electrode placed on the tip of the nose (e.g., Caldara et al.,
2003; Eimer, 2000; Senholzi & Ito, 2013). Impedances were
kept below 15 KX. Blinks were corrected from the EEG sig-
nal offline using a regression-based procedure (Semlitsch,
Anderer, Schuster, & Presslich, 1986). Trials containing volt-
age deflections of6 75 microvolts (lV) were discarded, as
well as trials undetected by the automatic artifact rejection
procedure that contained large muscle artifacts, as deter-
mined by visual inspection. Grand averages revealed a nega-
tive deflection at temporal lateral electrodes peaking around
165 ms and maximal at TP7, consistent with previous char-
acterizations of the N170 (Rossion & Jacques, 2011). First, a
signal-averaging approach was used to examine differences
in the N170 to faces of different races on an experiment-
wide level: EEG activity following the presentation of each
face was averaged together separately for each race to create
average waveforms for each subject for each race condition.
The N170 was quantified as the mean amplitude at electrodes

1Electrodes included Fp1, Fp2, Fz, FCz, FC3, FC4, Cz, C3, C4, CPz,
CP3, CP4, TP7, TP8, Pz, P3, P4, P7, P8, and Oz, plus four electrodes
placed above and below the left eye and on the outer canthi of each eye,
as well as on each mastoid and the tip of the nose.
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P7, P8, TP7, and TP8 between 135 ms and 195 ms poststi-
mulus onset (30 ms before and after the peak at TP7) for
each waveform. Then, for trial-level analysis, the N170 was
quantified in the same window for each separate trial for
each subject.

2.1.3 | Model specification

The R package lme4 (Bates, Mächler, Bolker, & Walker,
2015) was used to fit multilevel models for data analysis. All
models for both studies used an unstructured covariance
matrix and allowed for covariances between random slopes
and intercepts. Subjects and electrodes were used as crossed
random factors (i.e., a cross-classified model; Judd et al.,
2012). Intraclass correlations associated with each random
factor in each model can be found in Table 1. To determine
which slopes and intercepts should be included as random
effects, we used model-specification procedures described by
Bates, Kliegl, Vasishth, and Baayen (2015). This procedure
involved starting with a maximal model and then removing
random slopes based on the magnitude of the correlations
between random effects. Estimated random effect variances
and correlations can be found in the online supporting infor-
mation. Satterthwaite approximations were used to estimate
degrees of freedom and to obtain two-tailed p values; in
situations where the degrees of freedom were above 200,
we report the results as z statistics. Data analysis and code
can be found at <https://github.com/hiv8r3/MLM-ERP>.

Identical model specification procedures were used for both
examples.

Three models were used in Study 1: Model A demon-
strates the typical signal averaging approach, whereas Model
B and C use a trial-level approach. The dependent variable
for Model A was mean N170 amplitude quantified from
each subject’s averaged waveforms (i.e., two observations
per subject). As determined by model specification proce-
dures, the intercept and slope of race were allowed to vary
by subject; the intercept was also allowed to vary by elec-
trode. Race was added as a Level 1 predictor (effect coded;
Black521, White5 1).

For Model B and C, the dependent variable was mean
N170 amplitude quantified from the raw waveform recorded
during each trial (i.e., however many observations per sub-
ject as there were valid trials for that subject). In both mod-
els, race was again a Level 1 predictor (effect coded as in
Model A). Trial was also added as a predictor, which was
rescaled to have a range of 10 so that betas associated with
trial would be large enough to be interpretable. Rescaling
trial in this way has no impact on the estimated random
effects or the significance of the regression weights. The
same random effects structure was used as in Model A (i.e.,
random intercept and slope of race by subject, random inter-
cept by electrode), as the model would not converge when a
random slope for trial was included.

In Model B, the trial variable was centered at the begin-
ning of the experiment (ranged from 0 to 10), whereas in
Model C, trial was centered at the end of the experiment
(ranged from 210 to 0). This approach (Aiken & West,
1991) allows the fixed effect of race to be estimated for the
beginning and end of the experiment, respectively. The esti-
mated fixed effects of any predictors involving trial (i.e.,
main effect of trial, interaction between race and trial) are
identical for Model B and C.

2.2 | Results

Model A revealed a significant effect of race, b5 .24, t
(64)5 2.59, p5 .012, such that Black faces elicited larger
(more negative) N170s than White faces. Thus, from the sig-
nal averaging approach, we would conclude that there are
mean level differences between N170s elicited by Black
faces and White faces. However, the results from Model B
and C show a more dynamic picture. As evident in Figure 1,
the amplitude of the N170 was overall larger (more negative-
going) to Black faces compared to White faces, but this dif-
ference appears to decrease across the course of the experi-
ment. Indeed, Model B and C estimated a significant Race 3
Trial interaction, b52.04, z522.5, p5 .013, suggesting
the difference in N170 amplitude elicited by White and
Black faces changed significantly over the course of the
experiment. Examination of the fixed effect of race estimated

TABLE 1 Intraclass correlations associated with subject and
electrode for the signal averaging approach and trial level approach in
both studies

Signal averaging
approach

Trial level
approach

ICC Variance ICC Variance

Study 1

Subject .588 4.90 .048 5.15
Electrode .046 0.38 .005 0.48
Residual 3.05 101.89

Study 2

Subject .479 8.18 .116 8.29
Electrode .118 2.02 .028 2.03
Residual 6.88 61.04

Note. Variances (italicized) were estimated from intercept-only models (i.e.,
models without predictors). ICCs for subject and electrode were then calculated
from the variances and represent the proportion of total variance in the depend-
ent variable accounted for by each grouping variable (i.e., provide an index of
between-subject and between-electrode variability). Large subject ICCs in the
signal averaging approach are consistent with previous work reporting high
between-subject variability in visually evoked ERPs (e.g., Gaspar, Rousselet,
& Pernet, 2011). See supporting information for further discussion.
ICC5 intraclass correlation.
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separately in Model B and Model C revealed a significant dif-
ference at the beginning of the experiment, b5 .44, t(181)5
3.8, p< .001, but not at the end of the experiment, b5 .05,
z5 .38, p5 .703. In other words, the difference in N170s eli-
cited by White and Black faces evident at the beginning of
the task changed significantly over the course of the task and
was no longer apparent by the end of the task.

Lastly, ERP waveforms were additionally created for the
first and last 25% of trials, from which mean amplitudes
(including standard error) were calculated to show compati-
bility between the new method advocated here and existing
methods (Figure 2). Patterns of results show a very similar
pattern as that found with MLM.

2.3 | Discussion

With the increased power of MLM and a large sample size,
we found a main effect of race using the typical signal-
averaging approach, such that Black faces elicited larger
(more negative) N170s than White faces, consistent with
other studies (e.g., Brebner et al., 2011; Walker et al., 2008).
However, the signal-averaging approach obscures any
change that occurs over the course of the experiment. Trial-
level data revealed that, while the amplitude of the N170 was
significantly larger to Black compared to White faces at the
beginning of the task, this differentiation had effectively dis-
appeared by the end of the task. This pattern is consistent
with the possibility that differentiation in N170 amplitude to
faces of different races depends on motivation to categorize
faces by race, and that motivation to adhere to task demands
(categorize faces by race) diminishes over the course of the
task. However, participant motivation was not measured over
the course of the task, and there remain other possible
explanations for this pattern, including increasing familiarity

of the faces, ease of processing, familiarity with the task,
fatigue, or a combination of these.

Additionally, based on these results, one might expect to
see a negative correlation between the number of trials in a
task and the effect size of race-related differences in N170
amplitude reported in previous studies. However, this does
not appear to be the case, in that there is no consistent associ-
ation across studies between numbers of trials and the pres-
ence (e.g., Brebner et al., 2011; He et al., 2009; Herrmann
et al., 2007; Senholzi & Ito, 2013; Walker et al., 2008; Wiese
et al., 2009) or absence (e.g., Caldara et al., 2003, 2004;
Chen et al., 2013; Ofan et al., 2011) of race differences in
the N170, likely because existing studies differ on numerous
other dimensions (e.g., task parameters, trial timing, and task
demands) beyond number of trials. In the current Study 1,
number of trials may serve as an index for decreasing moti-
vation, but this index may not be consistent across different
studies with different task parameters. It is possible that a
meta-analysis examining a number of potential moderators
(including number of trials) could identify the specific factors
contributing to race (or ingroup–outgroup) effects in N170
amplitude. However, such an analysis is beyond the scope of
the current report, the goals of which were to illustrate the
potential utility of individual trial-level data for characteriz-
ing change in psychological processes related to face percep-
tion across an experimental session.

3 | STUDY 2

Our second example presents an extensively studied
response-locked ERP component known as the error-related
negativity (ERN), a negative deflection in the ERP waveform
that occurs immediately following an incorrect response
(Gehring, Liu, Orr, & Carp, 2011). The ERN is typically
maximal in the frontocentral midline region of the scalp and
originates from activity in the dorsal anterior cingulate cortex
(dACC; van Veen & Carter, 2002). Initially assumed to
reflect the activity of a neural error-monitoring system sensi-
tive to internal conflict (see Botvinick & Cohen, 2014; Hol-
royd & Coles, 2002), the ERN (and its neural generators in
the dACC) is now conceptualized as part of a broader neural
salience network that is necessary for making performance
adjustments when control wavers (Ham, Leff, Boissezon,
Joffe, & Sharp, 2013; Hoffstaedter et al., 2014).

One area of ongoing discussion concerns the relationship
between ERN amplitude and the number of errors an individ-
ual makes over the course of a task. Several studies have
shown that ERN amplitude is positively correlated with the
number of errors committed, such that individuals with
smaller (less negative) ERNs commit more errors (Hajcak,
McDonald, & Simons, 2003; Pieters et al., 2007; Riesel,
Weinberg, Moran, & Hajcak, 2013; Santesso, Segalowitz, &

FIGURE 1 The slopes associated with change inmean amplitude of
the N170 across the course of the task are plotted separately for Black and
White male faces. Simple slopes and intercepts are obtained fromModel
B. Shaded areas reflect6 1 standard error inmodel predictions
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Schmidt, 2005). However, there are two possible interpreta-
tions for this relationship: (a) that the ERN habituates over
time because errors become less salient as an individual makes
more of them, resulting in smaller ERNs when many error tri-
als are averaged together; or (b) that ERN amplitude is stable
over time and indicative of an individual difference, such that
individuals who have larger ERNs make fewer errors because
of the successful implementation of cognitive control.

To investigate these possibilities, we used MLM and trial-
level data to look at change in the ERN elicited by errors com-
mitted in the weapons identification task (WIT; Payne, 2001),
an implicit racial bias task. Although the relationship between
ERN amplitude and number of errors committed has primarily
been examined in the context of cognitive tasks outside the
realm of social psychology, this example investigates change
in ERN amplitude as more errors are committed over the
course of the task as a possible explanation for the positive
correlation between ERN amplitude and number of errors
committed reported in previous research.

3.1 | Method

3.1.1 | Participants

For this example, we examined EEG data collected from a
subset of participants from a larger study (N5 485) first
reported in Ito et al. (2015). The subset included 134 young
adults (79 men, 55 women) at two universities (University of
Missouri, n5 74, and University of Colorado, n5 60) who
completed the WIT (identical versions across sites). Partici-
pants’ ages ranged from 18 to 32 years (M5 19.8). One
hundred-twenty identified as White, 4 identified as Asian, 3
identified as Black, and 5 identified as more than one race; 9
participants identified as Hispanic.

3.1.2 | Materials and procedure

In the WIT, participants classified images of objects as either
handguns or household tools, each of which was primed by a

FIGURE 2 (a) Grand-averaged waveformswere formed using an average of P7, P8, TP7, and TP8 during the first and last 25% of trials. Negative
amplitudes are plotted downward. Dashed lines indicate the interval in which N170mean amplitude was quantified (135–195 ms). (b) Mean amplitude of
the N170 quantified from averaged waveforms for first and last 25% of trials. Error bars indicate standard error
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grayscale image of an African American or European Ameri-
can male face. The task included a practice block of 30 trials,
followed by a test block of 384 experimental trials. On each
trial, participants saw a visual pattern mask (a scrambled
black and white pattern, 500 ms), followed by a White or
Black male face (i.e., prime, 200 ms), followed by a gun or
tool (i.e., target, 200 ms), and then a second visual mask
(300 ms). Participants were instructed to classify the target as
either a gun or tool as quickly and accurately as possible; if
they responded slower than 500 ms, a “Too slow!” message
was presented to encourage faster responses. Trials were
separated by a 1,000-ms intertrial interval.

EEG data were collected using 29 tin electrodes in a
stretch-Lycra cap and placed according to the extended Inter-
national 10–20 system (i.e., the 10-10 system; American
Clinical Neurophysiology Society, 2006).2 Scalp electrodes
were referenced online to the right mastoid and rereferenced
offline to an average mastoid reference. Signals were ampli-
fied with a Neuroscan Synamps2 amplifier (Compumedics,
Charlotte, NC), filtered online at .10–40 Hz at a sampling
rate of 1000 Hz. Impedances were kept below 10 KX. Blinks
were corrected from the EEG signal and trials with artifacts
were rejected using the same procedure reported above. For
response-locked epochs, the data were further filtered at 1–
15 Hz (96 db roll-off). Grand averages of the response-
locked averages revealed a negative deflection at frontocen-
tral sites peaking around 75 ms and maximal at Fz on error
trials (see Figure 3), consistent with previous characteriza-
tions of the ERN (e.g., Olvet & Hajcak, 2008). Response-
locked amplitudes on correct trials are also shown in Figure
3 for comparison but were not of theoretical interest and are
not considered further. The ERN was quantified as the mean
amplitude 25–125 ms postresponse at electrodes Fz, FCz,
Cz, F3, F4, FC3, FC4, C3, and C4 for each error trial for
each subject.

To examine how ERN amplitude changes as a function
of how many errors have been committed, we numbered all
error trials sequentially for each subject (i.e., the first error
every participant committed was labeled as Error Number 1,
regardless of whether it occurred at Trial 10 or Trial 100). As
in Study 1, subjects and electrodes were included as crossed
random factors (cross-classified model). The intercept and
slopes of race and object were allowed to vary by subject;
the intercept was also allowed to vary by electrode. The
dependent variable was mean ERN amplitude quantified fol-
lowing each error committed by each subject (i.e., trial-level
data), ordered sequentially. Race of the prime (Black,
White), the type of object (gun, tool), and error number were

included as Level 1 predictors of ERN amplitude.3 Fixed
effects of race and object are interpreted at the first error
committed by each subject in this model.

3.2 | Results

First, we tested the bivariate correlation between each indi-
vidual’s ERN amplitude and the number of errors they com-
mitted, as in previous studies (e.g., Hajcak et al., 2003). This
correlation was not significant, r5 .08, p5 .339. However,
when trials were separated according to experimental condi-
tions, a significant correlation emerged between ERN ampli-
tude and number of errors in Black–tool trials, r5 .24,
p5 .004, such that subjects who more often misclassified a
tool as a gun following Black faces exhibited a more damp-
ened ERN response overall in those trials. Correlations in
each of the other conditions were nonsignificant: Black–gun
trials, r5 -.03, p5 .745; White–tool trials, r5 .10, p5 .230;
White–gun trials, r5 -.05, p5 .559.

Several significant fixed effects emerged from the trial-
level analysis. Interpreted at the first error committed by

FIGURE 3 Grand-averagedwaveforms depicting the ERN for the
first and last 25% of trials at frontocentral electrodes (averaged over Fz,
FCz, Cz, F3, F4, FC3, FC4, C3, C4) as a function of trial type, separately
for correct and incorrect trials. Negative amplitudes are plotted upward, as
is conventional when viewing the ERN

2Electrodes included Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4,
FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8,
O2, and O1, as well as electrodes placed above and below the left eye,
on the outer canthi of each eye, and on each mastoid.

3We ran a similar model with original trial number, rather than error
number, as the continuous variable, such that time on task was main-
tained between error commissions (i.e., an error committed on Trial 10
was not equivalent to an error committed on Trial 50, even if they were
both the first error committed by a participant). This resulted in a very
similar pattern of results as reported with error number as a predictor
(see online supporting information).
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each subject, the main effect of race was significant, such
that errors committed following Black primes elicited larger
ERNs than errors committed following White primes (Table
2). The main effect of object was also significant, such that
mistakenly classifying tools as guns elicited larger ERNs
than mistakenly classifying guns as tools. These main effects
were qualified by a significant Race 3 Object interaction,
where the difference in ERNs elicited by wrongly classifying
objects following Black faces was larger than the difference
in ERNs to different objects following White faces.

Additionally, the effect of error number was signifi-
cant, such that ERN amplitude became more positive
(smaller) as more errors were committed. This main effect
was qualified by an Error Number 3 Object interaction,
such that the positive association between error number
and ERN amplitude was stronger for errors following tools
than errors following guns. Further examination of the
simple slopes (Figure 4, Table 3) revealed a significantly
positive slope in the relationship between error number
and ERN amplitude for all conditions except the Black–
gun condition (i.e., when participants miscategorized guns
as tools following Black faces), although the three-way
Error Number 3 Race 3 Object interaction was only mar-
ginally significant.

ERP waveforms created for the first and last 25% of
trials (and mean ERN amplitudes) are shown in Figure 5.
Results show a very similar pattern as that found with
MLM. However, the advocated MLM approach is prefera-
ble, especially as very few error trials are included in each
waveform, as evidenced by remaining noise in each
waveform.

3.3 | Discussion

In this example, we tested within-subject change in ERN
amplitude across the course of an implicit bias task. This
approach revealed that early errors elicited larger (more neg-
ative) ERNs than errors committed later in the experiment,
although this was not the case when miscategorizing guns
following Black faces. This is the first demonstration of
attenuation in the ERN as the number of errors committed
increases over the course of an experiment, which has been
theorized but not tested due to limitations inherent in tradi-
tional statistical and methodological approaches. As error
number is correlated with time on task, and analyses con-
ducted investigating the effect of time on task produced very
similar results, it is unclear whether attenuation of the ERN
is due to decreasing error salience as more errors are commit-
ted or decreasing motivation as a task continues (especially
since ERP tasks can be quite long in duration), and what
implications this might have for reactive cognitive control
(e.g., Von Gunten, Volpert-Esmond, & Bartholow, 2017).
However, evidence that ERN amplitude decreases (becomes

TABLE 2 Fixed effects of multilevel model on the mean ampli-
tude of the ERN

b p

Race .639 (.097) .000*

Object -.605 (.119) .000*

Race 3 Object .290 (.091) .002*

Error number .076 (.015) .000*

Error Number 3 Race .001 (.015) .929

Error Number 3 Object .033 (.015) .023*

Error Number 3 Race 3 Object -.028 (.015) .056

Note. Unstandardized betas are presented; standard errors of the estimates are
in parentheses. Satterthwaite approximations were used to estimate degrees of
freedom to calculate p values. Race and object were effect coded (Black521,
White5 1; gun521, tool5 1). Error number is rescaled to range between 0
and 10.
*p< .05.

FIGURE 4 The slopes associated with change in mean amplitude of
the ERN across the course of the task are plotted separately for different
trial types. Simple slopes and intercepts are obtained from the model.
Shaded areas reflect6 1 standard error inmodel predictions

TABLE 3 Unstandardized coefficients and confidence intervals for
the simple slope of error number on ERN mean amplitude as a func-
tion of trial type

Black primes White primes

Object

Gun .016 [-.051, .082] .069* [.012, .126]
Tool .138* [.087, .190] .080* [.021, .139]

Note. Numbers in brackets are the 95% confidence interval around the esti-
mate. Error number has been rescaled to range between 0 and 10.
*Estimates for which the 95% confidence interval does not cross 0.
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more positive) as more errors are committed suggests that
correlations between small ERN amplitude and worse per-
formance in speeded computerized tasks are not the result of
traitlike individual differences in conflict monitoring, but
instead a dynamic relationship such that conflict monitoring
diminishes as more errors are committed.

4 | GENERAL DISCUSSION

As illustrated by these two examples, the use of trial-level
data in specifying multilevel models allows researchers to
investigate dynamic and changing psychological processes
indexed by ERPs. Although these two examples are primar-
ily within the realm of social cognition, these principles
apply to other fields in psychology that are interested in
processes that may change across time. With the large num-
ber of trials that ERP paradigms typically use, ERP research
is ideal for investigating change across trials within a single

experiment. As with any new tool, the increase in power and
utility of MLMs comes at the cost of devoting time to
develop the expertise necessary to implement them appropri-
ately (i.e., to choose appropriate random effects and covari-
ance structures). Fortunately, several articles and tutorials
have recently been published detailing the use of MLMs for
ERPs and other psychophysiological data (Kristjansson,
Kircher, & Webb, 2007; Page-Gould, 2017; Tremblay &
Newman, 2015; Vossen et al., 2011), as well as more gener-
ally for experimental behavioral data (Baayen et al., 2008;
Gueorguieva & Krystal, 2004; Quen�e & van den Bergh,
2004, 2008). Because MLM approaches use the rich trial-by-
trial information of the full data set produced from an ERP
experiment, they have yet unrealized potential for broadening
our understanding of sociocognitive processes as they
unfold, both over the course of a trial and over the course of
an entire experiment. We believe the benefits—including the
ability to handle missing observations, partition multiple
sources of variance simultaneously, and examine trial-level

FIGURE 5 (a) Grand-averaged waveforms depicting the ERN for the first and last 25% of trials at frontocentral electrodes (averaged over Fz, FCz,
Cz, F3, F4, FC3, FC4, C3, C4) as a function of trial type (error trials only). (b) Mean amplitude of ERN quantified from averaged waveforms (25–125 ms)
for first and last 25% of trials. Error bars indicate standard error
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effects—far outweigh the costs. Through these examples, we
hope to demonstrate the usefulness of this technique and
encourage other researchers to investigate trial-level change
in their own paradigms.
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