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A B S T R A C T   

Multilevel modeling (MLM) is becoming increasingly accessible and popular in the analysis of event-related 
potentials (ERPs). In this article, we review the benefits of MLM for analyzing psychophysiological data, 
which often contains repeated observations within participants, and introduce some of the decision-making 
points in the analytic process, including how to set up the data set, specify the model, conduct hypothesis 
tests, and visualize the model estimates. We highlight how the use of MLM can extend the types of theoretical 
questions that can be answered using ERPs, including investigations of how ERPs vary meaningfully across trials 
within a testing session. We also address reporting practices and provide tools to calculate effect sizes and 
simulate power curves. Ultimately, we hope this review contributes to emerging best practices for the use of MLM 
with psychophysiological data.   

Psychophysiologists have long recognized that the multivariate and 
densely repeated-measures nature of their data call for special ap-
proaches to data analysis (e.g., Games, 1976; Keselman and Rogan, 
1980; Vasey and Thayer, 1987; Wilson, 1967). Over the past half- 
century most researchers have continued to use traditional approaches 
for analysis of psychophysiological data, including the use of repeated 
measures ANOVA to test differences in mean amplitude or latency of 
traditionally quantified event-related potential (ERP) components (see 
Jennings and Allen, 2017; Luck, 2014). In the early years of the field, 
this practice was likely driven by the lack of available alternatives or 
feasible means to carry them out. However, since statistical software 
packages for conducting complex data analyses—and desktop-type 
computers with which to run them—became available in the early 
1980s, new analytic approaches have been developed that require more 
intensive computational resources for fitting models, including sophis-
ticated approaches that do not rely on quantifying a particular ERP 
component at a single moment in time (e.g., Kiebel and Friston, 2004; 
Litvak et al., 2011; Pernet et al., 2011a). However, it is beyond the scope 
of this article to describe all data analytic advancements for ERPs. 
Instead, we focus on one popular approach—multilevel modeling 
(MLM), alternatively called hierarchical linear modeling, mixed linear 

modeling, mixed effects modeling, and mixed effect regression—that 
has emerged for analyzing traditionally quantified ERP components. 

MLM is appropriate for any data that is structured such that obser-
vations are recorded within naturally occurring groups. In the realm of 
ERPs, multiple observations are grouped within individuals. A number 
of previous articles have advocated for the use of MLM with psycho-
physiological data, including ERPs (see Bagiella et al., 2000; Boisgontier 
and Cheval, 2016; Goedert et al., 2013; Kristjansson et al., 2007; Krueger 
and Tian, 2004; Page-Gould, 2017; Tibon and Levy, 2015; Tremblay and 
Newman, 2015; Volpert-Esmond et al., 2018; Vossen et al., 2011). The 
purpose of this article is to provide a gentle orientation to psycho-
physiologists who are interested in learning more about how to apply 
MLMs to their ERP data, and to provide suggestions for best practices to 
increase the reproducibility of these analyses and orient researchers to 
available resources to make the best analytical choices. 

1. Description of MLM and its advantages 

Multilevel modeling is an extension of the General Linear Model 
(GLM) that estimates both fixed effects, as the GLM does, and random 
effects. Fixed effects refer to effects that are expected to generalize 
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across the population and include the estimated effects of the specified 
predictor or independent variables (IV) on the outcome or dependent 
variable (DV). Fixed effects estimated with MLM, including betas, de-
grees of freedom, and associated p-values, are interpreted in a similar 
way as fixed effects estimated within a GLM. Unique to the MLM relative 
to the GLM are the random effects, which allow researchers to specify 
natural grouping variables (or “random factors”) in the data that result 
in non-independence of observations. In the case of ERP data, random 
factors will likely include participants and channels; however, other 
random factors are possible, including items or the stimuli used to elicit 
the ERP signal. The intercept of the random factor can be allowed to be 
random, meaning that a unique intercept will be estimated for each unit 
of that random factor (e.g., if participants are specified as a random 
factor, a different intercept can be estimated for each participant). 
Additionally, the slope associated with a particular predictor variable 
can be allowed to be random for each unit of the random factor (e.g., the 
effect of a particular predictor is estimated separately for each partici-
pant). The MLM will provide an estimate of the variance of the random 
intercept or slope, thereby providing an estimate of how much vari-
ability in the intercept or slope exists within a particular random factor.1 

rANOVA is essentially a special case of MLM and, thus, a multilevel 
model can be specified in a way that reproduces the results of a rANOVA. 
However, because it is the general case, MLM is much more flexible and 
allows for experimental or analytic designs that rANOVA cannot 
accommodate. For example, whereas rANOVA handles participants as 
the single random factor that results in dependence of observations, 
MLM can include multiple random factors in a variety of structures. This 
is particularly useful in ERP studies because repeated measurement 
within other factors produces dependence of observations, namely, 
electrodes/channels. In rANOVA, channel is often included as a pre-
dictor, which can result in unwieldy higher-order interactions that are 
difficult to interpret, especially as the number of channels increases 
(Luck, 2014). Instead, in MLM, in addition to specifying participants as a 
random factor, we can include channel as a random factor and estimate 
fixed effects of interest at the “average” channel. 

Additionally, by specifying multiple random factors, MLM can test 
questions about the relative amounts of variance explained by different 
random factors using a special case of MLM called covariance component 
models, alternatively called cross-classified models (Dempster et al., 1981; 
Goldstein, 1987; Rasbash and Goldstein, 1994). For example, consider a 
stimulus set of emotional faces in which each target person makes a 
series of expressions that vary by arousal and valence. Covariance 
component models could be used to determine whether variance in P300 
amplitude elicited by these faces is determined more by the targets or 
the participants (i.e., do P300s vary more as a function of which 
perceiver they are recorded from or which target they are elicited by?). 
Using unique ERP waveforms for each perceiver and target combination, 
we can specify perceivers and targets as crossed random factors and 
compare the variance in the random intercept for each group. More 
variance in one random factor or another suggests that either the 
perceiver or the target accounts for more variance in P300 amplitude. 
Thus, MLM expands the types of theoretical questions that can be 
answered using ERPs. 

A second advantage of MLM is the flexibility it allows in the as-
sumptions made about the variance and covariance between the ob-
servations in the dataset. In the early years of the field (e.g., Games, 
1976; Keselman and Rogan, 1980; Wilson, 1967), researchers were 
particularly concerned about the possibility that the use of rANOVA for 
the kinds of successive measurements commonly obtained in 

psychophysiological studies often violate core assumptions underlying 
the use of rANOVA, especially the assumption of sphericity (i.e., that the 
variance of all pairwise differences between repeated measurements is 
constant). As noted by numerous researchers tackling this issue (e.g., 
Blair and Karniski, 1993; Jennings and Wood, 1976; Keselman and 
Rogan, 1980; Vasey and Thayer, 1987), the assumption of sphericity is 
unrealistic when applied to psychophysiological data. Other solutions 
have been proposed within the context of rANOVA, including well- 
known adjustments to the degrees of freedom of a test—and therefore 
the observed p-value—based on the degree of non-sphericity it in-
troduces (e.g., Greenhouse and Geisser, 1959; Huynh and Feldt, 1970, 
1980) and multivariate tests such as Hoteling’s T2 test (Mardia, 1975). 
MLM handles this issue by allowing models to be specified in a way that 
does not assume sphericity, thus making an adjustment unnecessary. 
Specifically, because MLMs are estimated with maximum likelihood 
methods, the assumed covariance structure of the data can be specified 
in a number of ways, including as an autoregressive covariance matrix, a 
compound symmetry covariance matrix (satisfies conditions of sphe-
ricity but more restrictive), or an unstructured covariance matrix, which 
makes no assumptions of equivalence among elements of the variance- 
covariance matrix (for a more in-depth discussion of variance- 
covariance structures, see Arnau et al., 2010; Page-Gould, 2017; 
Singer and Willett, 2003). In the case of violations of sphericity, MLMs 
with unstructured covariance matrices (and thus no assumption of 
sphericity) outperform rANOVA in containing the Type 1 error rate 
(Haverkamp and Beauducel, 2017), and thus may be particularly 
appropriate for analyzing ERP data. Additionally, another positive 
benefit of using maximum likelihood estimation is robustness to missing 
data (e.g., Enders and Tofighi, 2007; Graham, 2009; Krueger and Tian, 
2004). 

Lastly, in contrast with rANOVA, MLM allows for both continuous 
and categorical IVs. Continuous IVs can include observation-level vari-
ables, such as the hue of a particular stimulus if stimuli vary along a 
continuum of color, or a person-level variable, such as self-reported 
depression symptoms. Depending on how the random and fixed effects 
are specified, researchers can investigate questions such as how 
continuous individual differences influence the effect of a particular 
experimental manipulation within a single model (i.e., a cross-level 
interaction), rather than using difference or residual scores to produce 
a single ERP observation per participant and examine how it correlates 
with the individual difference variable of interest. Lastly, this feature of 
MLMs also allows researchers to investigate single-trial ERPs with time 
or trial included as a continuous variable in the model to look at change 
in ERPs over time, which we will address in later sections. 

To introduce readers to the application of MLMs to ERP data, we will 
first use an example dataset with the error-related negativity and 
correct-response negativity (ERN/CRN) quantified from signal averaged 
waveforms to illustrate the steps of the analytic process. Then, we will 
discuss several extensions that are possible with MLM that rANOVA 
cannot accommodate. 

2. Using MLMs with signal averaged ERP waveforms: an 
example 

In the example data set, seventy-three college student participants 
(all African American; 22 male, 49 female, 2 trans/non-binary) 
completed a flanker task while EEG was recorded using 33 tin elec-
trodes.2 All scalp electrodes were referenced online to the right mastoid; 
an average mastoid reference was derived offline. Signals were 

1 It is worth noting that other approaches exist to model clustered data, and 
that some approaches do not involve specifying random factors (e.g., general-
ized estimating equations; McNeish et al., 2017). These approaches may be 
more useful when researchers are not interested in the random effects, as a GEE 
will provide similar inferences as an MLM. 

2 EEG was recorded at FP1, FP2, Fz, F1, F2, F3, F4, FCz, FC3, FC4, Cz, C1, C2, 
C3, C4, CPz, CP3, CP4, Pz, P1, P2, P3, P4, POz, PO5, PO6, PO7, PO8, Oz, TP7, 
TP8, T5/P7, and T6/P8. Additional electrodes were placed above and below the 
left eye and on the outer canthus of each eye (to record blinks and saccades) 
and over each mastoid. 
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amplified with a Neuroscan Synamps amplifier (Compumedics, Inc.), 
filtered on-line with a bandpass of 0.05–40 Hz at a sampling rate of 500 
Hz. Electrode impedances were kept below 10 KΩ. Ocular artifacts (i.e., 
blinks) were corrected from the EEG signal using a regression-based 
procedure (Semlitsch et al., 1986). On each trial of the flanker task, 
participants saw a horizontal string of five arrowheads facing to the left 
or right, in which the central arrowhead matched (congruent condition) 
or did not match (incongruent condition) the direction of the four 
flanker arrowheads. Participants completed 200 trials total and were 
allowed to rest every 50 trials. On each trial, participants first saw a 
fixation cross (jittered: 1400 ms, 1500 ms, 1600 ms), followed by the 
string of arrows (100 ms). Participants had 800 ms from the onset of the 
stimulus to identify the direction of the target (central) arrowhead with 
their right or left index fingers using a game controller. If they did not 
respond within the 800 ms response deadline, a ‘TOO SLOW’ message 
was presented on the screen before the next trial. 

Following baseline correction (baseline window: − 300 to − 100 ms 
prior to the response), error trials and correct trials were averaged 
separately to create two averaged waveforms per participant (see Fig. 1). 
Trials where no response was made and trials containing deflections 
±75 μV were not included. Only participants with more than 6 artifact- 
free error trials were included in the analysis (Olvet & Hajcak, 2009), 
resulting in a sample of 60 participants (19 male, 39 female, 2 trans/ 
non-binary) for the analysis. We quantified the ERN/CRN as the mean 
amplitude from 0 to 100 ms following incorrect/correct button presses, 
respectively, at channels Fz, F1, F2, F3, F4, FCz, FC3, FC4, Cz, C1, C2, 
C3, and C4. In addition to the flanker task, participants completed 
several self-report measures, including symptoms of anxiety and 
depression using the GAD-7 (Spitzer et al., 2006) and PHQ-9 (Kroenke & 
Spitzer, 2002), respectively. 

As with any other analytic strategy, the first thing to do is determine 
the theoretical hypothesis to test, including the predictor and outcome 

variables in the model. A large body of literature describes the ERN as a 
negative-going deflection that is larger following incorrect relative to 
correct responses (Holroyd & Coles, 2002; Olvet & Hajcak, 2009; Yeung 
et al., 2004). To confirm this pattern in the example dataset, we first 
need to set up our data in long format, which means each observation is 
in a unique row with columns identifying each variable associated with 
each observation (e.g., participant number, response type, channel). 
This is in contrast to wide format, which is typically used in rANOVA, 
where each participant is in a unique row and columns represent both 
different variables and repeated observations (see Fig. 2 for an illus-
tration). We can also include individual differences variables as unique 
columns (e.g., anxiety and depression scores). Since each participant has 
only one value for each individual difference variable, that value is 
repeated for every row associated with a particular participant when the 
data is in long format. 

2.1. Setting up the model 

To fit the model, we will use the lme4 (Bates et al., 2015) and 
lmerTest (Kuznetsova et al., 2017) packages in R. All R code is down-
loadable at [https://github.com/hivolpertes/MLMbestpractices]. First, 
we need to determine the hypothesis we want to test, and thus the 
outcome variable and the fixed effects or predictor variables to include 
in the model. In this example, we want to test differences in the mean 
amplitude of the ERN/CRN following incorrect/correct responses. Thus, 
mean amplitude of the ERN/CRN is the outcome variable and response 
(e.g., incorrect, correct) is the predictor (or fixed effect). 

Then, we must specify which random factors and structure to use, 
which reflects the hierarchical nature of the data. This includes which 
grouping variables (alternatively called random factors) to include and 
which slopes and intercepts you allow to vary for each random factor. 
ERP studies using averaged waveforms often have multiple observations 
for each channel and for each participant and thus, the most common 
random factors are participants and channels. Participants and channels 
can either be specified as independent factors (i.e., cross-classified 
model) or channels can be nested within participants (i.e., hierarchical 
model). A hierarchical model assumes that lower-level units (in this 
case, channels) belong to one and only one higher-level unit (in this case, 
participants). This might be the case if you expect the placement of the 
cap on each participant to vary, such that Fz measured for one partici-
pant is substantially different from Fz measured for another participant. 
In contrast, a cross-classified model assumes that lower-level units do 
not belong to one and only one higher level unit. 

Additional random factors can be selected depending on the data set 
and theoretical hypothesis being tested, such as stimulus items. Impor-
tantly, any random factor should contain enough units or clusters that 
observations are clustered within, although the threshold of what is 
enough is debated and depends on what estimated parameter you are 
most interested in (Gelman and Hill, 2007; Huang, 2018; McNeish and 
Stapleton, 2016a, 2016b; Snijders and Bosker, 1999). In general, the 
fewer the units or number of clusters within a random factor, the poorer 
the estimation of the variance associated with the random factor (Maas 
and Hox, 2005). A common rule of thumb is the 30/30 rule (30 units or 
clusters with 30 observations within each cluster). However, when 
examining fixed effects, others recommend a minimum threshold of 10 
(Snijders and Bosker, 1993), some suggest a minimal threshold of 5 
when examining fixed effects but 10–100 when examining random ef-
fects (McNeish and Stapleton, 2016a), and others suggest that having 
fewer than 5 units within a random factor does no harm but also does not 
differentiate the multilevel model from a classical regression model 
when examining the fixed effects (e.g., Gelman and Hill, 2007). Since 
most ERP studies using MLM are primarily interested in the fixed effects, 
we recommend including measurements from at least 5 units or clusters 
within a random factor (e.g., at least 5 channels in order to use channel 
as a random factor). In the current example, we have repeated mea-
surements within channels (13 channels total) and participants (60 Fig. 1. Averaged waveforms from example dataset (ERN-CRN).  
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participants total), so both are used as random factors. Since the same 
channels are being used for all participants, and we expect channels 
measured for one participant to be the same as for another participant, 
we will use a cross-classified model for this example. 

Now that we have our random factors, we can think about which 
variables correspond to each level of the model. Level 1 variables 
correspond to individual observations, such as response type, other 
experimental manipulations, or aspects of the stimuli or trials that are 
included as predictors. Level 2 variables correspond to one level above 
that. In a cross-classified model where participants and channels are 
crossed random factors (and on the same “level,” so to speak), variables 
corresponding to either participants or channels are Level 2 variables. In 
a hierarchical model where channels are nested within participants, 
variables corresponding to channels are Level 2 variables and variables 
corresponding to participants are Level 3 variables. 

Once you have chosen your random factors and decided to use a 
hierarchical or cross-classified model, you must decide which slopes and 
intercepts will vary by random factor. In general, allowing the effect of a 
variable to vary by a random factor (i.e., including it as a random slope) 
will not affect the estimate of the fixed effect for that variable, because 
the fixed effect is essentially the average of the random slopes. However, 
including a random slope will generally expand the standard error of the 
fixed estimate, thus increasing the associated p-value (Barr et al., 2013; 
Gelman and Hill, 2007). In other words, including a random slope 
(especially when there is a lot of group-related variance) controls the 
Type 1 error rate of the test of the fixed effect more tightly and provides 
a more conservative (and, some argue, more appropriate) test (Heisig 
and Schaeffer, 2019). When choosing which effects to include as random 
slopes, you can use either a theory-driven approach or an empirical or 
data-driven approach. 

2.1.1. Theory-driven approach 
A linear model is a formal representation of a hypothesis, which 

extends to how you believe units within a random factor differ from one 
another. If you think that people differ in terms of the outcome variable 
(e.g., average amplitude of a given ERP component), then you will want 

to estimate random intercepts for each participant. If you think that the 
effect of a particular predictor on the outcome will differ across people 
in either size or direction, then you will want to estimate a random slope 
for that particular predictor by participant. Similar justifications can be 
made for including random intercepts and slopes for other random 
factors, such as channels. However, given that adjacent electrodes are 
theorized to measure similar brain activity, the effect of a predictor is 
not often expected to differ across channels and random slopes are not 
often used in this case. Thus, one way to make decisions about random 
effects specification is based on past empirical data or theory. 

2.1.2. Empirical approach 
Of course, your theory may be wrong (or limited). Within the last 

decade, researchers in psycholinguistics began calling for researchers to 
follow a data-driven procedure where the maximal random effects are 
specified for every model (“maximal model;” Barr et al., 2013). In a 
maximal model, all Level-1 predictors3 are specified as random slopes. 
However, others have noted that using maximal models can result in 
significant loss of power (Matuschek et al., 2017). Additionally, as noted 
by Barr et al. (2013), the maximal model is frequently too complex to 
properly converge. When the maximal model is too complex to 
converge, parameter estimates are incorrect and models must be 
simplified. Thus, the maximal model may not always be appropriate and 
parsimonious models may be preferable. To determine the most 
appropriate parsimonious models, a number of strategies are used, 
including comparing nested models using likelihood ratio tests (for a 
comparison of strategies for model selection, see Seedorff et al., 2019). 

Fig. 2. Illustration of wide and long data formats.  

3 This applies only to Level-1 predictors, as Level-2 predictors cannot be 
included as a random slopes within a Level-2 random factor, because they are 
invariant within Level-2 units. In other words, if participants are being used as a 
random factor, Level-2 predictors (like depression or anxiety scores) will only 
have one observation for each person, so the effect of these variables on the 
outcome cannot be estimated separately for each person. In order to estimate a 
different random slope for each unit in a random factor, you need at least two 
observations per unit. 
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Regardless of whether you use a theory-driven or empirical approach to 
specify random effects, we believe that best practices involve at mini-
mum including random slopes for the main fixed effects of interest to 
properly control for Type 1 error, as intercept-only models are 
frequently too liberal and may result in spurious findings (Bell et al., 
2019). Once you have accounted for the main fixed effects of interest, 
you can make decisions whether to include more complex interactions as 
random slopes using a data-driven approach. 

Last, after having determined the fixed effects and random effects, 
you should choose the type of variance-covariance matrix to use, which 
specifies assumptions about how observations within and across units in 
a random factor (e.g., within and across participants) vary and covary. 
Some variance-covariance matrices involve more stringent assumptions, 
such as a compound symmetry variance-covariance matrix, which more 
closely approximates a rANOVA. We suggest using an unstructured 
variance-covariance matrix, which removes the sphericity assumption of 
rANOVA, as the assumption of sphericity is unrealistic when applied to 
psychophysiological data (e.g., Blair and Karniski, 1993; Jennings and 
Wood, 1976; Keselman and Rogan, 1980; Vasey and Thayer, 1987). By 
default, the lme4 package in R uses an unstructured variance-covariance 
matrix, although SAS by default uses a VC variance-covariance matrix 
(for more information on variance-covariance matrixes, see Haverkamp 
and Beauducel, 2017; Page-Gould, 2017). 

As mentioned before, in our example, we are testing the effect of 
Response Type (RespType) on the mean amplitude of the ERN/CRN. The 
model includes two crossed random factors (Participant, Channel), 
which we are estimating using an unstructured variance-covariance 
matrix. Using a theory-driven approach to determine the random ef-
fects, we included 1) a random intercept by participant, 2) response type 
as a random slope by participant, and 3) a random intercept by channel. 
The full model is described using Wilkinson notation as: 

MeanAmp̃RespType+(RespType|Participant)+ (1|Channel)

Our interpretation of the fixed effects depends on how Response 
Type is coded, similarly to interpreting fixed effects from a single-level 
regression model. When Response Type is dummy-coded (correct = 0, 
incorrect = 1), the estimate of the intercept is b = 5.926, 95% CIs [4.51, 
7.34] and the estimate of the effect of Response Type is b = − 4.294, 95% 
CIs [− 5.20, − 3.39]. From these estimates, we can calculate the esti-
mated marginal means for each group: the estimated marginal mean in 
the correct condition is 5.926 μV (the estimate of the intercept, since 
correct is coded as 0) and the estimated marginal mean in the incorrect 
condition is 1.632 μV (the estimate of the intercept minus the estimate of 
Response Type). When Response Type is effect-coded (correct = − 1, 
incorrect = 1), the estimate of the intercept is b = 3.779, 95% CIs [2.42, 
5.13] and the estimate of the effect of Response Type is b = − 2.147, 95% 
CIs [− 2.60, − 1.69], which means that across all trials, the estimated 
marginal mean is 3.779 μV. Then, we can calculate the estimated mar-
ginal means for each condition by adding or subtracting the estimate of 
Response Type to the intercept, which gives us the equivalent marginal 
means for correct and incorrect trials as the dummy-coded model. Using 
unstandardized estimates in this way gives us a sense of the magnitude 
of the difference between conditions in a meaningful unit (μV). When 
examining latency as the outcome variable, estimates similarly can be 
interpreted in whichever meaningful unit the outcome variable was 
measured on (such as milliseconds). 

Researchers using the null hypothesis significance testing (NHST) 
approach will additionally want to know if the effect of Response Type is 
statistically different from zero. Compared to single-level regression, 
determination of degrees of freedom (and thus, the p-value associated 
with a test of a fixed effect) is much more complicated in MLM. A 
number of possibilities exist for testing the significance of a fixed effect, 
including likelihood ratio tests of nested models, applying the z 

distribution to the Wald t values, Markov-chain Monte Carlo (MCMC) 
sampling, parametric bootstrapping, and different approximations for 
denominator degrees of freedom. We recommend the Satterthwaite 
approximation for denominator degrees of freedom, partly because it 
more appropriately controls Type 1 error and is less dependent on 
sample size than other methods, especially for REML-fitted models 
(Luke, 2017) and because of the ease of implementation—Satterthwaite 
approximation is the default for SAS and can be applied in R using the 
lmerTest package (Kuznetsova et al., 2017) in conjunction with the lme4 
package (Bates et al., 2015). All examples presented in this paper use the 
Satterthwaite approximation when reporting p values. 

Critics of NHST suggest that whether the effect of a particular pre-
dictor is different from zero is not always informative—instead, it may 
be more useful to understand the proportion of variance explained by 
the fixed effects (and therefore make judgements of the meaningfulness 
of the effect). In a single level regression or GLM, readers are familiar 
with R2 as the variance explained by all of the fixed effects included in 
the model. However, in multilevel models, the variance explained is a 
little more complex, since there are now multiple residual terms. Thus, 
several methods of calculating a pseudo-R2 have been proposed (e.g., 
Edwards et al., 2008; Johnson, 2014; Nakagawa et al., 2017; Nakagawa 
and Schielzeth, 2013; Snijders and Bosker, 1999). Importantly, there is a 
distinction between the marginal R2, which is the proportion of the total 
variance explained by the fixed effects, and the conditional R2, which is 
the proportion of the variance explained by both fixed and random ef-
fects. Either the marginal or conditional R2 can then be converted to 
other effect sizes that may be more common in your particular research 
literature. For example, the model R2 can be used to compute Cohen’s f2 

(Cohen, 1992) using: 

f 2 =
R2

1 − R2 

To estimate the variance explained by a particular predictor (i.e., to 
obtain an estimate of the local effect size), several methods exist. One 
method is to estimate Cohen’s f2 for each local effect by estimating R2 for 
two nested models: 

f 2 =
R2

2 − R2
1

1 − R2
2  

where R2
2 represents the variance explained by a model with the effect of 

interest (the full model) and R1
2 represents the variance explained by a 

model without the effect of interest (the restricted model). Cohen’s f2 for 
a local effect can easily be directly calculated using this method in SAS 
(Selya et al., 2012) and in R by fitting each model separately and esti-
mating the pseudo-R2 as mentioned previously using the r.squar-
edGLMM() function in the MuMIn packag (Bartoń, 2020) or the r2beta() 
function in the r2glmm package (Jaeger, 2017). 

An alternative method is to calculate a partial R2 statistic for each 
predictor, Rβ

2 (Edwards et al., 2008). One Rβ
2 statistic can be calculated 

for each predictor using the ANOVA output of an MLM model to get the 
F-statistic, the numerator (effect) degrees of freedom, and the denomi-
nator (residual or error) degrees of freedom that correspond to each 
predictor. 

R2
β =

(
df numerator

df denominator

)

F

1 +

(
df numerator

df denominator

)

F 

In the realm of ERPs, it remains unclear how large of an effect is 
meaningful, as meaningful differences in amplitude may vary depending 
on the ERP component of interest and the variance in the outcome is 
related to a number of factors, including the noisiness of the data and 
how many trials are included in each averaged waveform. Thus, 
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descriptions of effect size in future ERP studies are essential to trian-
gulate what may be a meaningful effect size in the study of ERPs. 

3. Visualizing data 

In addition to statistical tests, visualizing data is an important 
component of understanding statistical results. As most ERP studies are 
interested in the effect of categorical predictors, a common approach 
using rANOVA is to use bar or line graphs to depict mean amplitude 
averaged across participants and channels in each condition. However, 
depicting averages from the data does not account for the multilevel 
structure of the data, nor does it depict how much variability in the 
effect exists across people. When using multilevel modeling, we can plot 
1) the fixed effects estimates to summarize patterns across the whole 
sample, 2) the variance within each grouping variable (e.g., how par-
ticipants vary from each other), or both. To plot mean differences across 
experimental conditions and still account for the multilevel structure, 
we can plot the model-estimated means from the fixed effects (alterna-
tively called estimated marginal means). For both bar and line charts, 
this should include the values of the outcome variable that are predicted 
from your model for each condition (i.e., estimated means) and the 
standard errors of these model-estimated means as error bars. Estimated 
means can be calculated using a user-friendly, online tool available at 
http://www.quantpsy.org/interact/ (Preacher et al., 2006) or the 
emmeans package in R (Lenth, 2020) and then plotted as in Fig. 3. 

However, one benefit of MLM is being able to estimate unique effects 
for each unit in a random factor (e.g., participant) by including random 
slopes in the model. To visually represent the variance in a particular 
effect, plot the best linear unbiased predictions (BLUPs) estimated for each 
participant using a “spaghetti plot”. Spaghetti plots illustrate the vari-
ance in the effect, which we can see in differences in the slopes of the 
lines. If all lines are relatively parallel, there is little variance in the effect 
of Response Type across participants (which will be reflected in a small 
estimate of variance of the random slope of Response Type by partici-
pant), whereas lots of intersecting lines that are not parallel suggest a 
large amount of variance in the random slope. We suggest plotting each 
line with an opacity level below 100% to make each line easier to see 
and consider making each line its own color, if color visualizations are 
an option for your publishing outlet of choice (see Fig. 4 for an example). 
As we can see in this example, most participants show the same pattern 
as the fixed effect (more negative ERN amplitude in the incorrect con-
dition compared to the correct condition), but some slopes are flatter 
than others, and some participants even show an effect in the opposite 
direction. 

Of course, one can also plot both the estimated means for each 
condition and variance across individuals by overlaying the two plots. 
We suggest plotting the “average” effect (i.e., the fixed effect) in a 
slightly thicker width or different color to make it stand out (e.g., see 
Fig. 5). 

4. Extended applications of MLM 

One of the major benefits of MLM that rANOVA cannot accommo-
date is including continuous variables in the model. One example of this 
is testing how individual difference variables moderate the effect of the 
manipulated predictor. Past work has shown a link between trait anxiety 
and the size of the ERN/CRN, such that those who are more anxious 
show a more pronounced negativity following errors (Hajcak et al., 
2003; Weinberg et al., 2010; Meyer, 2017). To test the effect of trait 
anxiety on the size of the ERN/CRN using MLM, we can simply include 
trait anxiety as a predictor in the model (Response Type is effect coded; 
Correct = − 1, Incorrect = 1): 

Fig. 3. Model-estimated means plot illustrating fixed effect of response type.  

Fig. 4. Spaghetti plot illustrating variance in effect of Condition across par-
ticipants (i.e., random slopes). 

Fig. 5. Spaghetti plot with model estimated means overlaid. 
Note. The thick black line represents the average relationship estimated by the 
fixed effect and the thinner, multicolored lines represent the specific relation-
ships estimated for each person (the random slopes). 

H.I. Volpert-Esmond et al.                                                                                                                                                                                                                    

http://www.quantpsy.org/interact/


MeanAmp̃RespType ∗ Anx + (RespType|Participant) + (1|Channel)

As mentioned in an earlier footnote, we would not include anxiety as 
a random slope by participant because there is only one observation per 
participant (and is thus invariant). In this model, the effect of Response 
Type remains significant, b = − 1.87, 95% CIs [− 2.61, − 1.12], t(58.0) =
− 4.92, p < .001, such that mean amplitude is more negative following 
incorrect responses than correct responses. The effect of trait anxiety is 
marginally significant, b = 0.19, 95% CIs [− 0.01, 0.39], t(58.0) = 1.91, 
p = .061. Most importantly, to examine whether trait anxiety moderates 
reactivity to errors, we would look at the Response Type x Anxiety 
interaction. In this sample, the interaction is not significant, b = − 0.05, 
95% CIs [− 0.15, 0.05], t(58.0) = − 0.93, p = .356. The interaction 
provides a similar test as correlating trait anxiety scores with a differ-
ence score of the ERN and CRN (e.g., ΔERN). Previous research has 
shown differences in ΔERN between anxious and control groups 
(Ladouceur et al., 2006; Pasion and Barbosa, 2019; Weinberg et al., 
2010, 2012, 2015) and significant relationships between symptoms of 
generalized anxiety disorder and ΔERN (Bress et al., 2015; Klawohn 
et al., 2020), such that more anxious participants show a more negative 
ERN relative to the CRN, although other studies have not found 
consistent significant correlations between self-reported anxiety and 
ΔERN (e.g., Meyer et al., 2012). 

Another application that MLM allows for is the investigation of ERP 
responses to specific stimuli or events from individual trials, allowing 
researchers to investigate how ERP signals meaningfully change over the 
course of different trials or meaningfully differ in response to specific 
instantiations of stimulus presentations. As mentioned previously, prior 
to data analysis researchers typically average all responses elicited by 
stimuli of the same type or experimental condition (i.e., signal aver-
aging; Luck, 2014), which results in a data structure in which each 
participant has a single observation per channel for each experimental 
condition. This technique is effective for isolating physiological re-
sponses to events of interest (i.e., increasing signal-to-noise ratio) but 
makes assumptions that might not be tenable, including that the signal is 
constant across trials, and that any trial-to-trial variation is solely the 
result of noise, and therefore meaningless. A number of factors, 
including habituation, fatigue, sensitization, or momentary lapses in 
attention can result in meaningful variation (i.e., not merely noise) in 
ERPs across trials, thereby undermining the validity of signal averaging 
in some situations. 

A number of approaches to analyzing single trial ERPs have been 
proposed (Blankertz et al., 2011; Coles et al., 1985; Debener et al., 2005; 
Gaspar et al., 2011; Jung et al., 2001; Pernet et al., 2011b; Philiastides 
et al., 2006; Quiroga and Garcia, 2003; Ratcliff et al., 2009; Regtvoort 
et al., 2006; Rousselet et al., 2011; Sassenhagen et al., 2014). Multilevel 
modeling provides an extremely useful additional tool for researchers 
interested in trial-level variation in ERPs. Note, however, that because 
noise is not first being removed from the waveforms using the signal 
averaging approach, it is important that the EEG data are as clean as 
possible when a trial-level approach is used. Researchers should spend 
additional time and effort during the data collection process to ensure 
the highest quality data possible to reduce noise in the data and increase 
the ability of multilevel models to detect fixed effects of interest from 
individual trials. 

To examine the linear effect of time on change in psychological 
processes, researchers can include time or trial number as an additional 
fixed predictor in the model (e.g., Berry et al., 2019; Brush et al., 2018; 
Volpert-Esmond et al., 2018). As an example, the model may be speci-
fied as: 

DṼIV+Trial+(IV|Participant)+ (1|Channel)

Note that the inclusion of Trial in this way can only capture long- 
range trends such as habituation and fatigue. Quadratic and other 
non-linear effects can be included as additional predictors, although 
little research has been done in this area and polynomial fitting comes 

with its own set of challenges (Kristjansson et al., 2007; Tremblay and 
Newman, 2015). By examining the fixed effect of time, or interactions 
between time and other fixed predictors, researchers can infer large- 
scale change in the amplitude or latency of ERP components over the 
course of an experiment, as well as different rates of change for different 
experimental conditions. Additionally, the variable indexing time can be 
included as a random slope by participant so that researchers can 
examine how the effect of time (including processes such as habituation 
or learning) differs across participants. To get estimates of individual 
differences in the rate of change in ERPs, researchers can extract the 
BLUPs, which are participant-specific estimates of the effect of time. 
However, including time as a random slope often results in non- 
convergence issues, which must be addressed before interpreting the 
BLUPs. Last, using MLM with single-trial ERPs opens the door to using 
ERP amplitude or latency as a predictor of other trial-level variables 
(such as reaction time or other downstream ERP components; Volpert- 
Esmond and Bartholow, 2020; Von Gunten et al., 2018). 

Including continuous variables introduces increased complexity 
surrounding issues of centering variables that are unique to MLM. In 
typical single-level OLS regression, researchers often center and/or 
standardize continuous variables in order to interpret all other fixed 
effects as the effect observed at the mean of the centered variable. We 
suggest taking a similar approach to all continuous Level 2 variables (e. 
g., individual difference variables). However, in multilevel data, 
continuous Level 1 variables can either be centered across the entire 
data set (grand-mean centering) or centered within each level of the 
grouping variables (group-mean centering). The type of centering one 
chooses can significantly impact the interpretation of the fixed effects. 
There are a number of other resources discussing centering (e.g., Brauer 
and Curtin, 2018; Enders and Tofighi, 2007; Kreft et al., 1995; Paccag-
nella, 2006; Page-Gould, 2017) and contrast coding (Schad et al., 2020) 
within multilevel data. 

One particular case of centering that may be of interest may be dis-
aggregating between- and within-participant effects of a continuous 
predictor (e.g., Curran and Bauer, 2011). This is particularly relevant 
when using single-trial ERPs as a continuous predictor of some other 
outcome, such as a behavioral response within the same trial or an ERP 
response on a subsequent trial. In the absence of disaggregation, the 
relationship between single-trial ERPs and reaction time (for example) 
conflates the between-person effect (i.e., Do people with particularly 
large ERP responses also respond faster to stimuli in a particular task?) 
and the within-person effect (i.e., Does a larger ERP response on a 
particular trial, relative to a person’s average ERP response, facilitate a 
faster reaction time?). Depending on the theoretical question, re-
searchers may be more interested in one relationship than the other. To 
disaggregate within- and between-person effects, the researcher can 
effectively separate the predictor variable of interest into two separate 
predictors. The first predictor—each participants’ mean—is entered as a 
Level-2 (person level) predictor and represents the between-person ef-
fect. The second predictor—the participant-centered variable—is 
entered as a Level-1 predictor and represents the within-person effect. 

5. Reporting practices 

Because of the complexity surrounding MLMs, researchers have a 
number of degrees of freedom with respect to how MLMs are estimated 
and reported, including what covariance structure to use, which vari-
ables to include as fixed and random effects, how to test for interactions, 
how to center or effect-code variables, etc. Because of the flexibility of 
these models, it is imperative to provide enough information for an in-
dependent party to replicate the analysis and evaluate its suitability for 
the dataset at hand. Of course, providing code in an online repository 
such as Open Science Framework or GitHub is preferable. But we 
encourage researchers to include all essential information in the 
manuscript as well. At minimum, the entire model, including variance- 
covariance structure and random effects should be described (Meteyard 
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and Davies, 2020). To most effectively communicate the structure of 
each model used, we suggest using Wilkinson notation, which specifies 
the DV, IVs, and random effects. For example, 

DṼIV1+ IV2+(1+ IV1|Participant)+ (1|Participant : Channel)

specifies that two predictors were included, but not their interaction; 
that the intercept and the effect of the first predictor was allowed to vary 
by participant (i.e., IV1 was included as a random slope by participant); 
and that the intercept was allowed to vary by channel nested within 
subject. Alternatively, the following model specifies participants and 
channels as crossed random factors: 

DṼIV1+ IV2+(1+ IV1|Participant)+ (1|Channel)

R users will recognize that Wilkinson notation is used in the lme4 
package to specify models (and is also used in Matlab), thus providing 
less of a barrier than formal mathematical notation. The statistical 
software used to fit the models should additionally be reported, along 
with any changes to the default specifications (e.g., which covariance 
structure is specified). More extensive recommendations about report-
ing practices regarding model selection, model output, etc., can be found 
in Meteyard and Davies (2020). 

In addition to reporting the structure of the models using Wilkinson 
notation, we suggest reporting the intraclass correlation coefficient 
(ICC) for each random factor, which can be calculated from the vari-
ances estimated in the random effects: 

ICC =
τ2

τ2 + σ2  

where τ2 is the between-cluster variance (the variance associated with 
the random factor) and σ2 is the residual variance (Lorah, 2018). This 
gives you the proportion of total variation in the data that is accounted 
for by a particular random factor where higher ICCs represent more 
variance between units within that random factor (Gelman and Hill, 
2007). Since the complexity of the model affects the calculation of ICC, 
you should use variance estimates from an intercept-only model (i.e., a 
model with no fixed predictors): 

DṼ1+(1|Participant)+ (1|Channel)

When including more than one random factor (e.g., including par-
ticipants and channels in a cross-classified model), one would include 
the variance of all groups in the denominator. As an example, let’s look 
at sources of variance in the mean amplitude of the P2 ERP component 
elicited by Black and White male faces during a race categorization 
task.4 To calculate the ICC associated with subject, we would look at the 
output for the random effects from the following intercept-only model,5 

first using the signal averaged data: 

Model : P2amp̃1+(1|Participant)+ (1|Channel)

Random effects output:  
Random factors Name Variance Std. dev. 

Participant (Intercept)  8.314  2.883 
Channel (Intercept)  0.141  0.376 
Residual   2.306  1.5184  

ICCpar =
8.314

8.314 + 0.141 + 2.306
= 0.77  

ICCelec =
0.141

8.314 + 0.141 + 2.306
= 0.01 

In other words, variance between people accounts for 77% of the 
total variance, suggesting there is a lot of between-person variability in 
ERPs, whereas variance between channels accounts for 1% of the total 
variance, suggesting is there not a lot of variability between channels, 
which is expected given similarities in waveforms at adjacent channels. 
In contrast, when using trial level data, the ICC associated with subject is 
0.09, suggesting between-person variability only accounts for 9% of the 
total variance. Because of the amount of within-person variance from 
trial to trial, between-person variance accounts for much less of the total 
variance when using single-trial ERPs instead of signal-averaged ERPs. 

6. Estimating power 

Another barrier in transitioning to using MLM is the daunting pros-
pect of having to do a power analysis. Evaluating the power of a hy-
pothesis test, which is defined as the probability that the test will 
correctly reject the null hypothesis when the null hypothesis is false, is 
important in assessing how likely a particular result is true and able to be 
replicated. Additionally, ERP studies are often underpowered to find 
small effects (Clayson et al., 2019). Given that estimating an effect of 
zero—or estimating effects completely at random—is more accurate at 
determining the true population mean than using sample means derived 
from poorly powered studies (Davis-Stober et al., 2018), and that EEG 
studies are time-intensive and costly to run, an a priori power analysis 
can inform a researcher whether they have the resources to conduct a 
study that is well-powered enough to be informative. Additionally, ac-
cording to recent guidelines for best practices in reporting of ERP studies 
(Keil et al., 2014), researchers should always report the achieved power 
of a particular design. Many tools are available to estimate power for 
typical single-level designs (e.g., Faul et al., 2009; Murphy et al., 2014), 
although discussion is still ongoing about the most appropriate ways to 
conduct and use a power analysis (Anderson et al., 2017; Cribbie et al., 
2019; Albers & Lakens, 2018; Lakens & Evers, 2014). 

In multilevel designs, how power relates to sample size is more 
complicated, as both the number of groups (e.g., the number of in-
dividuals who participate during the study) and the number of obser-
vations per group (e.g., the number of trials or observations per 
individual) can vary. In multilevel models, power is affected by group 
sample size, observation sample size within each group, the ICC asso-
ciated with group, whether you are testing a Level 1 (observation-level) 
or Level 2 (participant-level) effect, and numerous other parameters of 
the model (Arend and Schäfer, 2019). As a general rule of thumb, 
increasing the number of Level 2 units (e.g., the number of people 
participating in the study) has a larger effect on power to detect fixed 
effects than increasing the number of Level 1 units (e.g., the number of 
experimental conditions or trials within each participant; Maas and Hox, 
2005; Snijders, 2005). For a more specific approximation of the sample 
size (at both Level 1 and Level 2) needed to achieve the desired level of 
power for a particular test, most researchers use a simulation approach 
to power using Monte Carlo simulations. This approach repeatedly 
simulates data from the hypothetical distribution that we expect our 
sampled data to come from and then fits the same multilevel model to 
each data set. Power is estimated by how often the true effect is detected. 

To set up a power simulation, you need to make assumptions about 
the true treatment effect and also specify all the other parameters that 
characterize the study, including the size of the fixed effect of interest, 
ICCs of any random grouping variables, variances of random intercepts 
and slopes, correlations between random intercepts and slope, etc. 
Because of the large number of parameters needed to simulate an 

4 Data were previously published in Volpert-Esmond et al. (2017). Although 
the original study manipulated where participants fixated on the face, data used 
here include only trials presented so that participants fixated in a typical 
location (i.e., between the eyes). The sample includes 65 participants and the 
average number of trials included per participant was 107.7 (min = 54, max =
127). Data from 7 channels were used (C3, C4, CP3, CP4, CPz, Cz, Pz).  

5 This is an example of a cross-classified model, where subject and channel 
are included as separate grouping variables, rather than channel being nested 
within subjects in a typical hierarchical model. Calculating ICCs for groups 
nested within each other is similar (i.e., estimates of variance for all groups plus 
the residual variance is used in the denominator). 
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appropriate data set, it is often easier to conduct a power simulation on a 
set of pilot data, although parameters can be assumed and simulated 
without pilot data (Gelman and Hill, 2007). The simr package in R 
(Green and MacLeod, 2016) has emerged as a popular tool for power 
simulations using multilevel models. The package allows users to input a 
sample data set (either a pilot or simulated data set) and calculate 
observed power for a desired effect, as well as produce power curves in 
which power is plotted as a function of a particular aspect of the design, 
such as number of participants, number of observations within each 
participant, or effect size. To provide an example of a power curve 
generated using simr, we use previously published data6 looking at how 
the race of a face influences mean P2 amplitude: 

Model : P2amp̃Race+(Race|Participant)+ (1|Channel)

When using signal averaged data, the effect of race is significant, b =
− 0.59, t(64.0) = − 4.82, p < .001, such that Black male faces elicit larger 
P2s than White male faces. A post-hoc power simulation indicates that 
the observed power for this effect with the given sample size (65 par-
ticipants, 7 channels for each participant, and 2 observations for each 
channel) is 99.6%, suggesting this design is very well-powered to detect 
this effect. Fig. 6 shows a power curve demonstrating the decrease in 
power as the sample size decreases. 

Thus, we achieve 80% power to detect an effect of this size with 
about 25 participants. However, using pilot data to estimate the true 
effect size may result in an underpowered follow-up study (Albers & 
Lakens, 2018; Anderson et al., 2017). Thus, we suggest either adjusting 
the anticipating effect size to be smaller than that achieved in a pilot 
study when planning a follow up study or producing a sensitivity power 
curve to identify what sample size would be needed to detect the 
smallest meaningful effect size. Fig. 7 demonstrates the decrease in 
power as the effect size decreases, indicating that with a sample of this 
size, we would be able to detect an effect as small as b = − 0.35 with 80% 
power. 

7. Limitations 

MLM is not a panacea. As with any analytic approach, MLM comes 

with significant limitations. First, effectively using MLM involves gain-
ing the expertise to organize data in the appropriate format, learning 
how to implement models in statistical software, making appropriate 
decisions for model specification, correctly interpreting the output, etc. 
Additionally, due to the continued evolution and development of 
knowledge about MLMs, there currently is a perceived lack of consensus 
and established, standardized procedures (Meteyard and Davies, 2020). 
Many resources are becoming available for researchers interested in 
learning this statistical approach, including workshops at prominent 
conferences (i.e., Society for Psychophysiological Research), stand- 
alone workshops hosted by societies, private organizations, and uni-
versities (e.g., APA Advanced Training Institutes, Statistical Horizons, 
University of Michigan, University of North Carolina, University of 
Connecticut, Arizona State University), and numerous tutorials and ar-
ticles on applying MLM to both behavioral data (Arnau et al., 2010; 
Baayen et al., 2008; Brauer and Curtin, 2018; Gueorguieva and Krystal, 
2004; Jaeger, 2008; Judd et al., 2012; Maas and Snijders, 2003; Quené 
and van den Bergh, 2004, 2008) and psychophysiological data (Bagiella 
et al., 2000; Kristjansson et al., 2007; Page-Gould, 2017; Tibon and Levy, 
2015; Tremblay and Newman, 2015; Volpert-Esmond et al., 2018; 
Vossen et al., 2011). However, little is known about the effectiveness of 
this training and how it is implemented in practice (King et al., 2019). 
Moreover, the mere fact that these opportunities exist does not ensure 
that researchers will or can take advantage of them, and therefore this 
situation is far from ideal in terms of ensuring adequate quantitative 
methods training in the field—likely contributing to a significant gap in 
psychologists’ quantitative training. Thus, learning how to appropri-
ately apply MLM to ERP data may be a significant barrier. 

In addition to the time cost of learning the approach, MLM is often 
quite computing-power intensive and models can take much longer than 
a typical rANOVA to run. In the case of the P2 example given previously, 
the first author ran these models on a MacBook Air with a 1.6 GHz Dual- 
Core Intel Core i5 processer with 8 GB of RAM. To test the effect of face 
race on P2 amplitude using signal-averaged data, it took only a few 
seconds to fit the model. To run the same model using trial-level data, it 
took less than 10 s to fit the model. However, as the data set becomes 
larger and the model becomes more complex, the time required to fit a 
MLM increases dramatically. For example, this more complex model 
testing the effect of target race, target gender, fixation, task, and 
participant race on trial-level P2 data recorded in two face processing 

Fig. 6. Power to detect the fixed effect of race on P2 amplitude as a function of 
sample size. 
Note. 14 observations are included per each participant (7 channels with 2 
observations at each channel). The effect of race is set at b = − 0.59 (the 
observed effect size in the data). 

Fig. 7. Power to detect the fixed effect of race on P2 amplitude as a function of 
effect size. 
Note. 14 observations are included for each participant (7 channels with 2 
observations at each channel). The sample size is set at 65 participants. 

6 Same data as used in ICC example. 
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tasks (256 trials in each task)7 took over 12 h to fit: 

P2amp ∼ TarRace*TarGender*Fix*Task*ParRace 
+(TarRace*TarGender*Fix*Task|Participant) + (1|Participant : Channel)

Similarly, because power simulations require fitting the same model 
to multiple simulated data sets, power simulations can take quite some 
time. To produce the power curve for the signal averaged data shown in 
Fig. 1 (varying the sample size), the power simulation took roughly 90 
min to run. The power curve shown in Fig. 2 (varying the size of the 
effect) took roughly 3 h to run. To produce the same power curve 
depicted in Fig. 1 for trial-level data rather than signal-averaged data, 
the first author did not have enough processing power—when she 
attempted it, the simulation ran for one week straight (24 h/day) and 
was only a quarter of the way finished before the author stopped the 
simulation. Thus, processing power is essential for running MLMs, 
especially when using hundreds of trial-level observations, which is 
increased 20-fold when running power simulations. Given limitations in 
researchers’ access to powerful computers or server clusters, this may be 
a significant limitation in the use of MLMs for ERP data, especially when 
using trial-level data. 

Lastly, researchers may encounter estimation problems when 
running the model, the most common of which are convergence prob-
lems, very long estimation times, and singularity issues. Most estimation 
problems can be addressed with two guiding principles: Simpler models 
and better fitting models will have fewer estimation problems. Generally 
speaking, the more complex your random effects are, the more difficult 
the model parameters are to estimate. As mentioned earlier, one 
approach is to trim the most complex random effect (e.g., random slope 
for an interaction term), run the model again, and then progressively 
trim random effects in order of decreasing complexity until the model 
converges. 

Additionally, the time that it will take to run an MLM is directly 
related to how well your model specification reflects reality. If it takes a 
very long time to run an MLM but you received a warning (e.g., the 
Hessian matrix was not positive-definite), look at the variance estimates 
in the random effects to see if any variances are zero or very close to 
zero. If so, then it means that the random effect does not vary much from 
group to group, and thus is an over-specification. Trim any random ef-
fects that have zero variance, and run the model again. 

The process of troubleshooting estimation problems is done itera-
tively (i.e., remove one term, rerun the MLM), so that the model does not 
get oversimplified in the process. Given how many choices that can be 
made when handling these problems, it is a good idea to establish a 
common approach to troubleshooting estimation problems that you 
apply across all your research studies that use MLM and reporting your 
approach in your method sections. 

8. Conclusion 

Despite its limitations, MLM has great potential to advance the study 
of neurocognitive processing through advanced modeling of psycho-
physiological data. We have focused here on the use of MLM for ERP 
data, but of course MLM also can be used with other psychophysiological 
data that are structured similarly (e.g., Bourassa et al., 2016; Briollais 
et al., 2003; de Looff et al., 2019). Not only can MLM address limitations 
inherent to the use of rANOVA with such data, such as violations of 
assumptions leading to inflated Type 1 error rate and the need for list-
wise deletion when observations are missing, MLM can greatly expand 
the types of research questions that can be posed and tested with 

psychophysiology. For example, here we highlighted that MLM permits 
examination of change over time in physiological and behavioral re-
sponses using trial-level data, and also how trial-level data can be used 
to test for within- and between-trial associations among dependent 
measures (e.g., ERP amplitudes predicting reaction time; Volpert- 
Esmond and Bartholow, 2020). Even if researchers stick with a tradi-
tional signal averaging approach to signal processing, MLM affords more 
precise modeling of effects and more appropriate parsing of error vari-
ance (e.g., by estimating random slopes differing across individuals and 
independent variable conditions) than does rANOVA. Thus, we recom-
mend that researchers invest the time—and, if necessary, the resources 
to bolster their computing power—to learn MLM, and discover the 
flexibility the technique affords for their psychophysiological research 
programs. Finally, we strongly recommend that researchers who adopt 
MLM pay close attention to the latest developments in the rapidly 
evolving literature on best practices in the use of the technique and its 
limitations. 
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